Using (13) and (15), the axial stress $\boldsymbol{\sigma}_{\mathbf{Z}}$ becomes

$$
\sigma_{z}=\sigma_{r}-\frac{2 \bar{\sigma}}{3 \bar{\epsilon}}\left(2 \epsilon_{r}+\epsilon_{\theta}\right)
$$

These last three equations can be combined with the two equilibruim equations, (11) and (12), to give

$$
\begin{align*}
& \frac{\partial \sigma_{r}}{\partial r}+\frac{2 \bar{\sigma}}{3 r \bar{\epsilon}}\left(\epsilon_{r}-\epsilon_{\theta}\right) \\
& +\frac{1}{3} \frac{\partial}{\partial z}\left(\frac{\bar{\sigma}}{\bar{\epsilon}} \gamma_{r z}\right)=0 \tag{20}
\end{align*}
$$

$$
\begin{gather*}
\frac{1}{3} \frac{\partial}{\partial r}\left(\frac{\bar{\sigma}}{\bar{\epsilon}} \gamma_{r z}\right)+\frac{\partial \sigma_{r}}{\partial z}+\frac{\bar{\sigma}}{3 r \bar{\epsilon}} \gamma_{r z} \\
-\frac{2}{3} \frac{\partial}{\partial z}\left[\frac{\bar{\sigma}}{\bar{\epsilon}}\left(2 \epsilon_{r}-\epsilon_{\theta}\right)\right]=0 \tag{aI}
\end{gather*}
$$

